基于边界积分方程方法的热传导方程定解问题解的渐近分析

 2022-05-12 09:05

论文总字数:39066字

\documentclass[oneside,openany,12pt]{cctbook}

\zihao{3}\ziju{0.15}

\pagestyle{myheadings} \textwidth 16.0cm \textheight 22 truecm

\special{papersize=21.0cm,29.7cm} \headheight=1.5\ccht

\headsep=20pt \footskip=12pt \topmargin=0pt \oddsidemargin=0pt

\setcounter{section}{0}

\frontmatter

\def\nn{\nonumber}

\newcommand{\lbl}[1]{\label{#1}}

\newcommand{\bib}[1]{\bibitem{#1} \qquad\framebox{\scriptsize #1}}

\newcommand{\scl}{\stepcounter{local}}

\newtheorem{theorem}{\bf{定理}}[section]

\newtheorem{lemma}{\bf {引理}}[section]

\newtheorem{definition}{\bf{定义}}[section]

\newtheorem{proof}{\bf{证明}}[section]

\newtheorem{corollary}{\bf{推论}}[section]

\newtheorem{property}{\bf{命题}}[section]

\newtheorem{remark}{\bf{注}}[section]

\newtheorem{example}{\bf{例}}[section]

\newcommand{\be}{\begin{equation}}

\newcommand{\ee}{\end{equation}}

\newcommand\bes{\begin{eqnarray}}

\newcommand\ees{\end{eqnarray}}

\newcommand{\bess}{\begin{eqnarray*}}

\newcommand{\eess}{\end{eqnarray*}}

\newcounter{local}

\newcounter{locallocal}

\setcounter{local}{1}

\renewcommand{\theequation}{\arabic{section}.\arabic{local}}

\renewcommand{\theequation}{\thesection.\arabic{equation}}

\def\s#1{\setcounter{local}{#1}}

\usepackage{Picinpar}

\usepackage{amsmath,amssymb}

\usepackage{graphicx}

\usepackage{flafter}

\usepackage{fancyhdr}

\usepackage{ccmap}

\usepackage{listings}%代码

\usepackage{xcolor}%代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%设置页眉双下划线%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\newcommand{\makeheadrule}{%

\makebox[0pt][l]{\rule[0.55\baselineskip]{\headwidth}{0.4pt}}%

\rule[0.7\baselineskip]{\headwidth}{0.4pt}}

\renewcommand{\headrule}{%

{\if@fancyplain\let\headrulewidth\plainheadrulewidth\fi

\makeheadrule}}

\makeatother

\pagestyle{fancy}

\renewcommand{\chaptermark}[1]{\markboth{\kaishu{\chaptername}~~~#1~}{}} %设置页眉章节

\fancyhead[l]{\kaishu{~~~东~南~大~ 学~本~科~毕~ 业~ 论~ 文}}

\fancyhead[c]{}

\fancyhead[r]{\leftmark}

\fancyfoot[l]{}

\fancyfoot[c]{\thepage}

\fancyfoot[r]{}

\begin{document}

\numberwithin{equation}{section}

\begin{titlepage} %从此到 \end{titlepage} 的内容第一页不编页号,以后的编页号

\end{titlepage}

\frontmatter

\begin{center}{\kaishu \zihao{4}{基于边界积分方程的热传导方程定解问题解的渐近分析}}\end{center}

%\begin{center}{\kaishu \zihao{5}{孙师伟}}\end{center}

%\begin{center}{\kaishu \zihao{5}{(07215116)}}\end{center}

\vskip 0.5cm

\begin{center}{\kaishu\zihao{4} \bf 摘\ \ \ \ 要}

\end{center} 

\addcontentsline{toc}{chapter}{摘\ \ \ \ 要}

{\noindent{\kaishu{

热传导方程是一类极其重要的抛物型方程,近年来,热传导方程在应用科学中出现的频率越来越高,涉及的领域也越来越广泛。在科学研究中,如果一个热介质内存在一个很小的空腔,那么空腔的存在对于热介质内的热量传递是否具有影响以及具有多大的影响是一个很值得探讨的问题。本文基于这个问题建立了一个热传导模型,我们考虑在三维空间的一个区域内存在一个小尺寸空腔,然后给出边界条件和初始条件,建立一个无界域热传导方程的初边值问题。本文基于边界积分方程方法,研究当空腔直径很小时,该热传导方程定解问题解的渐近性态。文章首先基于位势理论,将热传导方程初边值问题转化为一个边界积分方程,该积分方程在各向异性~Sobolev~空间~$H^{1,1/2}(\Gamma_T)$~中具有唯一可解性,且当边界数据具有一定光滑性时可得到密度函数的光滑性质。另外,热方程的单层位势可以表示成密度函数依赖于时间~$t$~的~Laplace~方程的单层位势。

基于此,我们得到了上述热传导方程定解问题解的渐近性态。

}}} \vskip 1cm

\noindent{\kaishu {\bf 关键词:} \ \ 热方程, \ \ 适定性,\ \ 渐近性态。}

\newpage

\begin{center}{\kaishu \zihao{4}{Asymptotic analysis of solutions to a heat conduction problem based on boundary integral equations}}\end{center}

%\begin{center}{\kaishu \zihao{5}{孙师伟}}\end{center}

%\begin{center}{\kaishu \zihao{5}{(07215116)}}\end{center}

\vskip 0.5cm

\begin{center}{\kaishu\zihao{4}\bf Abstract}

\end{center} 

\addcontentsline{toc}{chapter}{Abstract}

{\noindent{\kaishu{

Heat conduction equation is a kind of extremely important parabolic equation. In recent years, heat conduction equation appears more and more frequently in applied science and involves more and more fields. In scientific research, if there is a very small cavity in a thermal medium, it is a question worth discussing whether the existence of the cavity has influence on the heat transfer in the thermal medium and how much influence it has. In this paper, a heat conduction model is established based on this problem. We consider the existence of a small-sized cavity in an area of three-dimensional space, and then give the boundary conditions and initial conditions to establish an initial-boundary value problem for the heat conduction equation in unbounded domain. Based on the boundary integral equation method, this paper studies the asymptotic behavior of the solution of the definite solution of the heat conduction equation when the cavity diameter is small. Firstly, based on potential theory, the initial boundary value problem of heat conduction equation is transformed into a boundary integral equation, which has unique solvability in anisotropic Sobolev space~$H^{1,1/2}(\Gamma_T)$~, and the smooth property of density function can be obtained when the boundary data has certain smoothness. In addition, the monolayer potential of the thermal equation can be expressed as the monolayer potential of Laplace equation whose density function depends on time $t$. Based on this, we obtain the asymptotic behavior of the solution of the above heat conduction equation

}}} \vskip 1cm

\noindent{\kaishu {\bf Keywords:} \ \ heat equation, \ \ well-posedness, \ \ asymptotic property.}

\newpage

\tableofcontents

\mainmatter

\newpage

\chapter{引言}

\section{热方程简介}

热传导方程,也称为扩散方程,在一般的应用中,主要是用来描述某些量的密度~$u$~随着时间的演变,以热量传导作为主要例子研究,也可以相应地用于描述物理扩散过程,

比如液体的渗透,气体的扩散等。除此之外,热传导方程可以用来描述粒子扩散或者神经细胞的动作电位等现象,也可以在金融数学中作为期权的模型出现,可以说热方程涉及到物理化学以及金融等各个领域,是一类十分重要且典型的抛物型方程。

一般我们考虑下面一个方程,即导热系数为~$k$~、热容量为~$c$~、质量密度为~$\rho$~的均匀各向同性导热介质中的温度分布~$u$~满足偏微分方程

$$\frac{\partial u}{\partial t}=k \Delta u. \eqno(1.1)$$

不失一般性,我们假设常数~$k=1$, (1.1)即为热传导方程的标准式。热传导方程具有很强的物理背景,最初是由傅里叶推导而来,主要是基于物理学中的能量守恒定律。

如果~$V\in U$~是任意光滑的子区域,那么~$V$~中总量的变化率等于边界~$\partial V$~的净通量的负值,因此我们可得

$$\frac{d}{dt}\int_V u\ dx=-\int_{\partial V} F\cdot \nu\ dS,\eqno(1.2)$$

其中~$F$~指的是通量密度,所以我们可以得到

$$u_t=-\mathrm {div}\ F,\eqno(1.3)$$

而且子区域~$V$~是任意的。在很多情况下,~$F$~指的是~$u$~的梯度方向但是方向相反,即~$F=-aDu$,将方程带入(1.3),我们可以得到

$$u_t=a\ \mathrm{div}(Du)=a \Delta u,\eqno(1.4)$$

当~$a=1$~时,就得到了热方程. \cite{Evans}

根据物理学的相关知识,假如已知一个物体在初始时间以及物体边界的分布状况,那么我们就能确定物体在以后的时间的分布状况,这就是热传导方程的初边值问题。我们一般设初始条件为

$$u(x,y,z,0)=\varphi (x,y,z),$$

即物体在~$t=0$~时的温度分布状况。边界条件一共有三类,第一类是~Dirichlet~边界条件,表示为

$$

u(x,y,z,t)|_{(x,y,z)\in \Gamma}=g(x,y,z,t),

$$

其中~$\Gamma$~代表物体的边界,而~$g$~函数是已知的,这类条件表达的是我们已知物体表面的温度分布状况。

如果我们不知道物体表面的温度,但是流过物体表面的单位时间内的热量是已知的,即物体表面的流速是一定的,这就是第二类边界条件即~Neumann~边界条件,表示为

$$

剩余内容已隐藏,请支付后下载全文,论文总字数:39066字

您需要先支付 80元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;