方程式赛车悬架系统设计

 2022-02-20 07:02

论文总字数:21982字

摘 要

一套优秀的悬架与转向系统能够为赛车在各种工况下提供较好的操控稳定性。方程式赛车多采用不等长双横臂独立悬架系统,搭配横向稳定杆,在弯道行驶过程中,以极小的轮距变化和重心变化等特点为赛车提供良好的操控稳定性。悬架的导向机构可以根据各自的需求设计不同的结构,控制臂的材料及外形也有不同的选择,阻尼器一般是螺旋弹簧和空气弹簧较为常见。设计步骤大致如下:先以CAD为平面绘图工具将悬架的硬点建立好,再将硬点坐标输入ADAMS分析进行轮跳分析并优化出新的硬点坐标,然后再用CATIA进行三维模型建立,排查干涉,接下来将模型导入ANSYS进行强度分析及优化,最后即可定稿这套悬架系统。在悬架硬点设计中,导向机构是一个比较麻烦的问题,主要表现在杠杆比可变,零件干涉以及横向稳定杆的布置等问题上。

传统导向机构设计方法是利用MATLAB求解五元五次方程组,得到很多个解,然后从结果中筛选比较合理的解,这样操作比较繁杂,而且不够直观。本文则采用了“尺规作图”的方法在CAD中进行求解,结果很直观,而且可以精准的设置总杠杆比为1:1。

关键词:方程式;悬架系统;CATIA;操控稳定性

Suspension System Design for Formula Car

Li Jiasheng

Supervised by Yin Guodong, Wang Rongrong

Abstract: This paper in allusion to formula suspension system, using the software of modeling and analysis for the design of the suspension system.

A good suspension and.steering system is able to provide the car under various conditions good control stability. The purpose of this paper is to describe suspension system design process. Formula with different length double wishbone independent suspension system, the collocation of the horizontal stabilizer bar, in the process of high-speed entry and the exit, with characteristics of tiny wheel base and center of gravity changes provide good control stability for the car. The suspension of the steering mechanism can be designed according to the requirements of their different structure, material and shape control arm has a different choice, damper is generally helical spring and air spring is common. Design step is roughly as follows: Start with AUTO CAD for the graphic drawing tool will set up good suspension hard points. Then input hard point coordinates into ADAMS to round jump analysis and optimization of new hard point coordinates. Next using CATIA build 3D modeling, checking interference. The strength in the model into ANSYS to analysis and optimization, finally can be finalized the suspension system. General suspension hard points in the design process, steering mechanism is a more troublesome problem. Mainly displays in the leverage ratio, variable parts interference as well as the lateral stabilizer bar decorate on such issues.

The traditional design method of steering mechanism is to utilize MATLAB to solve the five yuan five equations, get a lot of a solution. Then from the results of screening more reasonable solution, such operations are multifarious, and not intuitive. This paper has adopted the approach of "ruler gauge mapping" to find the solution in the CAD, the result is straightforward, and can accurately set the total leverage ratio of 1:1.

Key words: formula;suspension system;CATIA;handling stability

目 录

摘要

Abstract

目录

1. 绪论 1

1.1 独立悬架 1

1.2 双叉臂结构 1

1.3 FSC简介 2

1.3.1 学生智慧的竞争 2

1.3.2 发动机 2

1.3.3 悬挂系统 2

1.3.4 空气动力性能 2

1.3.5 轻量化 3

1.3.6 安全 3

1.4 谁在关注FSC 3

2. 汽车悬挂系统基本知识 7

2.1 悬架构件 7

2.1.1 导向机构 7

2.1.2 弹性元件 7

2.1.3 阻尼元件 7

2.1.4 稳定装置 7

2.2 方程式赛车悬架的基本要求 8

2.3 轮胎轮辋选择 8

2.4 整车参数 8

2.4.1 轮距和轴距 8

2.4.2 轮胎定位参数 9

3. 悬架几何 11

3.1 侧倾中心 11

3.2 侧倾外倾系数 11

3.3 纵倾中心 11

3.4 悬架导向机构定位角 11

3.5 上下控制臂长度 11

3.6 杠杆比的确定 12

4. 悬架刚度计算 15

4.1 整车参数 15

4.2 悬架刚度计算 16

4.3 横向稳定杆设计及计算 19

4.3.1 不装加横向稳定杆 19

4.3.2装加前后悬横向稳定杆 19

5. 阻尼计算 23

6. 硬点坐标仿真及优化 25

6.1 输入硬点 25

6.1.1 车轮前束角仿真 25

6.1.2 车轮外倾角仿真 25

6.1.3 主销内倾角仿真 26

6.1.4 主销后倾角仿真 26

6.1.5 轮距仿真 27

6.2 轮胎定位参数优化 27

6.2.1 车轮外倾角 27

6.2.2 主销内倾角优化 28

6.2.3 车轮外倾角优化 29

6.2.4 前束角优化 29

6.2.5 轮距优化 30

6.2.6 主销后倾角优化 30

7. 悬架受力计算 32

7.1 加速工况 32

7.1.1 载荷分布计算 32

7.1.2 轴向力求解 33

7.1.3 前进方向分析 34

7.1.4 俯视方向分析 35

7.2 制动和转向工况 36

7.2.1 载荷分布计算 36

7.2.2 前悬轴向力求解 36

7.2.3 前悬制动工况 48

7.2.4 后悬轴向力求解 39

7.2.5 后悬制动工况 39

8. 三维模型建立 42

9. 重要零部件强度分析 46

9.1 加速工况 46

9.2 制动工况 45

10. 总结与展望 48

10.1 总结 48

10.2 展望 48

致谢 49

参考文献 50

方程式赛车悬架系统设计

1、 绪论

剩余内容已隐藏,请支付后下载全文,论文总字数:21982字

您需要先支付 80元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;