高导热金刚石铜复合材料的制备及性能研究

 2022-03-15 08:03

论文总字数:44746字

摘 要

金刚石/铜复合材料因具有热导率高、热膨胀系数可控等优点,是目前新一代电子封装材料研究的热点。但金刚石与铜的润湿性差,两相界面结合弱,无法制备出理想的高导热复合材料。本文采用放电等离子烧结法(SPS)和气压浸渗法制备金刚石/铜复合材料,研究了制备工艺对其性能的影响,并利用金刚石表面金属化和铜基体合金化两种方法改善金刚石与铜的界面结合,提高复合材料的导热性能。本文主要研究结果如下:

采用SPS法制备金刚石/铜复合材料,探究了烧结温度、压力和保温时间对复合材料性能的影响,发现165μm裸料金刚石(体积分数为50%)和纯铜粉为原料制备金刚石/铜复合材料的最佳工艺为:烧结温度930℃,烧结压力50MPa,保温保压10min。在此基础上,发现向铜基体中添加钛粉可有效改善金刚石/铜的界面结合,提高复合材料的热导率。钛粉和金刚石体积分数分别为3vol%和50vol%时复合材料的热导率高达562.1W/(m·K),25-300℃的平均热膨胀系数为9.94×10-6/K。

采用气压浸渗法制备金刚石/铜复合材料,分别采用金刚石表面金属化和铜基体合金化方法引入碳化物界面层,改善金刚石和铜基体的界面结合,提高复合材料的热导率。在此基础上,发现同时采用上述方法可制备出热导率更高的复合材料,其中用850℃盐浴镀铬30min的金刚石和Cu-0.18wt%Zr合金制得的复合材料热导率最高,达到684.7W/(m·K),25-300℃的平均热膨胀系数为7.05×10-6/K。对比放电等离子烧结法,采用气压浸渗法制备的金刚石/铜复合材料导热率高、热膨胀系数低,整体性能更为优异。

关键词:金刚石/铜复合材料;电子封装;高导热;放电等离子烧结法;气压浸渗法

ABSTRACT

The diamond/Cu composite material has the advantages of high thermal conductivity and controllable thermal expansion coefficient, and is a hot spot in the research of a new generation of electronic packaging materials. However, due to the poor wettability of diamond and copper, the two-phase interface is weak so that the ideal high thermal conductivity composite cannot be prepared. In this paper, spark plasma sintering (SPS) and pressure infiltration were used to prepare diamond/Cu material. The effects of preparation parameters on the thermal physical properties of the composites were investigated. The diamond surface metallization and copper matrix alloying are used to improve the interface between diamond and copper, and improve the thermal conductivity of the composite. The main research results of this paper are as follows:

The effects of sintering temperature, sintering pressure and holding time on the properties of the composites prepared by SPS method were investigated. The best process for preparing diamond/copper composites with 165μm bare diamond (50% by volume fraction) and pure copper powder as raw materials was as follows: sintering temperature 930°C, sintering pressure 50MPa, and holding time 10min. On this basis, it was found that the addition of titanium powder to the copper matrix can effectively improve the interface of diamond/copper, improve the thermal conductivity of the composite. When the volume fraction of titanium powder and diamond is 3vol% and 50vol%, the thermal conductivity of the composite is as high as 562.1W/(m·K), the coefficient of thermal expansion between 25℃ and 300℃ is 9.94×10-6/K.

Gas pressure infiltration was used to prepare the diamond/copper composite. The carbide interface layer was introduced by diamond surface metallization and copper matrix alloying respectively to improve the interface between diamond and copper so that the thermal conductivity of the composite can be improved. On this basis, it was found that diamond/copper composites with higher thermal conductivity can be prepared by using these two methods simultaneously. The composites made of diamond chrome-plated with 850°C salt bath for 30 min and Cu-0.18wt%Zr alloy had the highest thermal conductivity, reaching 684.7W/(m·K), and its coefficient of thermal expansion between 25℃ and 300℃ is 7.05×10-6/K. Compared with the discharge plasma sintering method, the diamond/copper composite material prepared by the gas pressure infiltration method has excellent overall performance which manifest as higher thermal conductivity and lower thermal expansion coefficient.

Key words: Diamond/copper composite; Electronic packaging; High thermal conductivity; Spark plasma sintering; Gas pressure infiltration

目 录

摘要 I

ABSTRACT II

第一章 绪论 1

1.1 引言 1

1.2 电子封装材料及其发展现状 1

1.2.1 电子封装材料 1

1.2.2 电子封装材料的发展现状 2

1.3 金刚石/铜复合材料 4

1.3.1 金刚石/铜复合材料的制备方法 4

1.3.2 金刚石/铜复合材料的导热性能及影响因素 5

1.3.3 铜基体合金化研究现状 6

1.3.4 金刚石表面金属化研究现状 7

1.4 选题目的及研究内容 8

第二章 试验材料及研究方法 10

2.1 试验材料 10

2.1.1 金刚石颗粒 10

2.1.2 基体材料 10

2.1.3 其它材料 11

2.2 试验设备 12

2.3 复合材料制备研究方案 12

2.3.1 整体工艺路线 12

2.3.2 放电等离子烧结法工艺流程设计 13

2.3.3 气压浸渗法工艺流程设计 15

2.4 复合材料性能表征 16

2.4.1 复合材料密度与致密度测试 16

2.4.2 复合材料微观组织分析 17

2.4.3 复合材料物相分析 17

2.4.4 复合材料导热率测试 17

2.4.5 复合材料热膨胀系数测试 18

第三章 放电等离子烧结法制备金刚石/铜复合材料 19

3.1 烧结温度对金刚石/铜复合材料性能的影响 19

3.1.1 断口微观形貌 19

3.1.2 致密度 21

3.1.3 热导率 22

3.1.4 热膨胀系数 22

3.2 烧结压力对金刚石/铜复合材料性能的影响 23

3.2.1 断口微观形貌 24

3.2.2 致密度 25

3.2.3 热导率 26

3.2.4 热膨胀系数 27

3.3 保温保压时间对金刚石/铜复合材料性能的影响 28

3.3.1 断口微观形貌 28

3.3.2 致密度 29

3.3.3 热导率 30

3.3.4 热膨胀系数 31

3.4 钛添加剂对金刚石/铜复合材料性能的影响 32

3.4.1 断口微观形貌 32

3.4.2 致密度 34

3.4.3 热导率 35

3.4.4 热膨胀系数 35

3.5 本章小结 36

第四章 气压浸渗法制备金刚石/铜复合材料 37

4.1 气压浸渗工艺设计 37

4.2 金刚石表面金属化对复合材料性能的影响 38

4.2.1 金刚石表面镀钛对复合材料性能的影响 39

4.2.2 金刚石表面镀铬对复合材料性能的影响 42

4.3 铜基体合金化对复合材料性能的影响 45

4.3.1 断口微观形貌 46

4.3.2 致密度 46

4.3.3 热导率 47

4.3.4 热膨胀系数 48

4.4 镀铬金刚石和Cu-Zr合金制备金刚石/铜复合材料 48

4.4.1 断口微观形貌 49

4.4.2 致密度 50

4.4.3 热导率 50

4.4.4 热膨胀系数 51

4.5 SPS法与气压浸渗法制得复合材料性能对比 52

剩余内容已隐藏,请支付后下载全文,论文总字数:44746字

您需要先支付 80元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;