大型火电机组WFGD系统水耗特性建模与优化调整分析

 2022-08-23 11:08

论文总字数:37791字

摘 要

二氧化硫(SO2)是大气主要污染物之一,大型燃煤火电厂是SO2主要排放源之一,随着社会对环境保护的要求不断提高,国家和相关部门对火电机组烟气中SO2排放浓度的标准也在不断提高,在火电机组超低排放改造的要求下,符合超低排放标准的电厂排放浓度控制在50mg/Nm3以下,SO2脱除率基本都要求控制在99%以上。到目前为止,我国大部分电厂采用的是石灰石-石膏湿法烟气脱硫系统(WFGD)。脱硫系统在脱除SO2的同时增加了电厂运行成本,其中耗水量对电厂运行成本有着较大影响,WFGD系统的水耗也成为电厂关注的焦点,作为该脱硫工艺的主要技术经济指标之一,一般来讲,脱硫系统水耗可占到电厂总水耗的40%-50%。研究如何在保持高脱硫率的同时降低该脱硫工艺的水耗,具有较大的现实意义。

本文对火电机组WFGD系统的用水、耗水情况进行分析,在计算系统进出口水量的基础上建立了WFGD系统水平衡变工况计算模型,分析影响脱硫系统水平衡的关键因素。脱硫系统的进口水量主要由烟气带入水量,设备冲洗水和脱硫系统补充水等组成;出口水量主要由出口净烟气携带水,二水石膏含的结晶水,石膏浆排出水和废水等组成。脱硫系统水耗受多重因素影响,例如入口烟温,煤质,环境条件,辅机运行等,而其中脱硫塔入口烟气温度是对脱硫系统水耗影响最大的因素。脱硫塔内蒸发水量是脱硫塔水耗中最重要的组成部分,进入脱硫塔的原烟气经过循环浆液的逆流洗涤后,烟气中的水蒸汽达到饱和状态,其随锅炉烟气经过吸收塔除雾器后排入大气,不能回收利用。在整个FGD系统反应过程中,这部分水量占整个脱硫系统用水量的90%左右,其中在脱硫塔中蒸发的水量约占脱硫塔出口烟气中的水蒸汽的30%。因此,减少脱硫塔内蒸发水量是减少脱硫塔水耗的主要途径。

根据对水耗影响因素的分析,本文从改单吸收塔为双塔,加装GGH,加装低温省煤器的角度对脱硫系统进行了优化,并提出了相关改进建议,编写了相应的优化指导软件。除GGH和加装低温省煤器的方法以外,其他的方法收效较小,甚至难以取得节水作用。而GGH则存在腐蚀,堵灰等严重的问题,因此低温省煤器为本文推荐的节水方法。

关键词:湿法烟气脱硫系统;石灰石-石膏脱硫工艺;水平衡建模;优化方案;低温省煤器

Modeling of Water Consumption Characteristics of WFGD System for Large-scale Thermal Power Unit and Optimization Analysis

Abstract

Sulfur dioxide (SO2) is one of the major pollutants in the atmosphere. Large coal-fired thermal power plants are one of the main sources of sulfur dioxide. With the increasing demand for environmental protection, the state and relevant departments have a rising standard on the concentration of sulfur dioxide in flue gas. In the thermal power unit with ultra-low emission requirements, emission standards of power plant emissions are controlled below 50mg / Nm3, sulfur dioxide removal rate are basically required to be controlled above 99%. So far, most of our power plants use limestone - gypsum wet flue gas desulfurization system (WFGD). The water consumption of WFGD system has become the focus of power plant, In general, desulfurization system water consumption can account for 40% -50% of the total water consumption of power plants. It is of great practical significance to study how to reduce the water consumption of the desulfurization process while maintaining high desulfurization rate.

Based on the analysis of the water consumption of the WFGD system in the thermal power unit, the calculation model of the water balance of the WFGD system is established on the basis of calculating the import and export water volume of the system, and the key factors influencing the water balance of the desulfurization system are analyzed. The imported water is mainly composed of water in flue gas, the equipment flushing water and the desulphurization system supplemented water. The export water is mainly carried out by exporting net flue gas carrying water, dihydrate gypsum containing crystal water, gypsum slurry discharge water and waste water. Water consumption is affected by multiple factors, such as inlet smoke temperature, coal quality, environmental conditions, auxiliary operation, etc., and the temperature of desulfurization tower inlet flue gas has the biggest impact on the desulfurization system water consumption factors. The amount of evaporated water in the desulphurization tower is the most important component of the water consumption of the desulfurization tower. As the original flue gas entering the desulfurization tower is washed back by the circulating slurry, the water vapor in the flue gas reaches the saturated state, then the flue gas passes through the absorption tower, after the demister flow into the atmosphere, can not be recycled. During the entire FGD system, this part of the water accounts for about 90% of the water consumption of the total desulphurization system, where the amount of water evaporated in the absorb tower accounts for about 30% . Therefore, reducing the amount of evaporated water in the desulfurization tower is the main way to reduce the water consumption of the desulfurization tower.

According to the analysis of influencing factors of water consumption, this paper optimizes the desulfurization system from the perspective of adding single absorption tower to double tower, installing GGH and installing low temperature economizer, and puts forward the relevant improvement suggestions and prepares the corresponding optimization Guidance software. Besides GGH and the installation of low-temperature economizer method, the other methods less effective, or even difficult to achieve water-saving effect. And with GGH there is corrosion, dust and other serious problems, so low temperature economizer is the proposed water-saving method.

KEY WORDS: Wet flue gas desulfurization system; limestone - gypsum desulfurization process; water balance modeling; optimization analysis; low temperature economizer

目 录

摘 要 II

Abstract III

第一章 绪论 1

1.1 课题研究背景及意义 1

1.1.1 我国火电厂脱硫背景 1

1.1.2 石灰石-石膏法脱硫工艺简介 1

1.2 国内外研究现状 3

1.3 本文研究的目的和内容 4

第二章 水平衡构成和超低排放改造对水耗的影响 5

2.1 水平衡的构成及计算方法 5

2.1.1 水平衡的构成 5

2.1.2 水平衡的计算方法 7

2.2 脱硫效率的回归计算 13

2.2.1 脱硫效率的影响因素 14

2.2.2脱硫效率的回归计算 15

2.3 超低排放改造对原水平衡的影响 16

2.4 本章小结 18

第三章 水平衡的变工况计算 19

3.1 典型工况下的水平衡 19

3.2 变工况下水平衡 23

3.2.1变负荷 23

3.2.2 变煤质 24

3.2.3 环境条件 25

3.2.4 辅机运行情况 26

3.3 软件编写 27

3.4 本章小结 27

第四章 优化分析 28

4.1 双塔方案 28

4.2 气-气换热器(GGH) 30

4.3 低温省煤器 32

4.4 本章小结 33

第五章 结论与展望 34

致 谢 35

参考文献 36

第一章 绪论

课题研究背景及意义

1.1.1 我国火电厂脱硫背景

随着我国经济的迅速发展,社会对电力的需求也越来越迫切。2016年,全国用电形势呈现增速同比提高、动力持续转换、消费结构继续调整的特征。全社会用电量同比增长5.0%,增速同比提高4.0个百分点。第三产业用电量增长11.2%,持续保持较高增速;城乡居民生活用电量增长10.8%;第二产业用电量同比增长2.9%,制造业用电量同比增长2.5%,而装备制造、新兴技术及大众消费品业增长势头较好,反映制造业产业结构调整和转型升级效果继续显现,电力消费结构不断优化。[1]

煤炭,在我国能源结构中一直占有最高的比例,而燃煤同时也是污染物SO2的主要来源。SO2作为一种腐蚀性强的酸性气体,若不加限制地排放会对环境造成极大危害,甚至会影响人们的生产生活活动。发电厂作为燃煤大户,在排出烟气前进行脱硫的必要性不言而喻。我国也在不断制定严格的标准,以限制工业污染物排放中的SO2含量。湿法脱硫由于生产过程简单,脱硫效率高,生成的石膏具有使用价值等特点,成为了当前电厂脱硫系统的主流,据中国电力企业联合会2009年关于火电厂脱硫设备使用现状调查报告数据,全国火电厂已投运烟气脱硫的机组中,90%以上采用石灰石/石灰-石膏湿法烟气脱硫工艺。[2]

1.1.2 石灰石-石膏法脱硫工艺简介

石灰石-石膏法脱硫系统主体部分是吸收塔,反应都在吸收塔中进行。除此之外,还有增压风机,GGH或低温换热器(可选),真空皮带机,浆液循环泵等部件组成。主要系统有:烟气系统,吸收氧化系统,浆液制备系统,石膏脱水系统,排放系统。

剩余内容已隐藏,请支付后下载全文,论文总字数:37791字

您需要先支付 80元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;