基于ADMM的配电网分布式多能协同优化运行研究

 2022-05-23 08:05

论文总字数:32365字

摘 要

步入21世纪以来,随着全球经济和新能源技术的飞速发展,地球的化石能源产生了急剧消耗,其燃烧所导致的环境污染和气候恶化等问题越来越严重。为了改变这种趋势,减少能源的浪费率,人们开始寻找更多的方法去解决这一问题。如今的配电网为了顺应这种趋势,已经转变为具有经济环保、电力安全性和可靠性高以及满足用户的多样化需求等优点的主动配电网,而分布式能源在配电网中的参与率也逐渐增高。分布式能源的广泛使用对于配电网的运行成本、电能安全等都有着巨大的意义。所以,如何实现主动配电网中各类分布式能源的多能协同优化调度是一个目前各个国家亟需解决的一个巨大难题。

传统的集中式优化调度有着优化目标选择不灵活、计算效率低、需要及其高效的检测设备、可靠性较差等很多缺点,而随着分布式能源的大量使用,这种情况还会加剧。为了解决这种困境,本篇论文介绍了一种基于交替方向乘子法(alternating direction method of multipliers, ADMM)的配电网分布式多能协同优化运行方法。不同的区域可以根据它的特殊情况因地制宜地选择不同的优化目标,这样就可以对主动配电网优化调度的目标进行更加灵活的调节,提高了优化效率。我们先建立一个分布式优化调度模型,确定了各个区域的优化目标和约束条件,然后采用改进的交替方向乘子法对其进行求解。

最后,在MATLAB软件上进行仿真验证。采用交替方向乘子法对前文所述模型进行优化调度的分析计算。将该算法与集中式优化方法的优化调度结果进行比较,成功验证了算法的收敛性和准确性。另外,交替方向乘子法的优化效率更高,成本更低,更加符合未来电力系统发展的需要,具有良好的应用前景。

关键词:分布式,多能,交替方向乘子法,优化

Abstract

Since the beginning of the 21st century, with the rapid development of global economy and new energy technology, the earth's fossil energy has been consumed sharply, and the problems of environmental pollution and climate deterioration caused by its combustion have become more and more serious. In order to change this trend and reduce the wave rate of energy,people are beginning to find more ways to solve the problem. In order to comply with this trend, today's distribution network has been transformed into an active distribution network with the advantages of economic and environmental protection, high power security and reliability, as well as meeting the diversified needs of users. The participation rate of distributed energy in distribution network is also increasing gradually. The wide use of distributed Energy for Distribution Network The operation cost, power security and so on are of great significance. Therefore, how to realize the multi-energy cooperative optimal scheduling of all kinds of distributed energy in active distribution network is a huge problem that each country needs to solve urgently at present.

The traditional centralized optimal scheduling has many shortcomings, such as inflexible selection of optimization objectives, low computational efficiency, high requirements for hardware equipment, poor reliability and so on. However, with the extensive use of distributed energy, this situation will be aggravated. In order to solve this dilemma, this paper introduces a distributed multi-energy cooperative optimization method for distribution network based on alternating direction multiplier (alternating direction method of multipliers, ADMM). Different regions can choose different optimization objectives according to their special circumstances, so that different optimization objectives can be selected according to local conditions. The goal of active distribution network optimal dispatching can be adjusted more flexibly and the optimization efficiency can be improved. We first establish a distributed optimal scheduling model, determine the optimization objectives and constraints of each region, and then use the improved alternating direction multiplier method to solve it.

Finally, the simulation is carried out on MATLAB software. The alternating direction multiplier method is used to analyze and calculate the optimal scheduling of the model described above. The algorithm is compared with the optimal scheduling results of the centralized optimization method, and the convergence and accuracy of the algorithm are verified successfully. In addition, the alternating direction multiplier method has higher optimization efficiency and lower cost, which is more in line with the needs of power system development in the future, and has a good application prospect.

Keywords: distributed,multi-energy,alternating direction multiplier method,optimization

目录

摘要

Abstract

第一章 绪论

1.1选题背景及其意义

1.2国内外研究现状

1.2.1 配电网优化调度现状

1.2.2 数学优化方法的研究现状

1.3 本文主要工作

第二章 集中式与分布式优化方法研究

2.1 引言

2.2 集中式与分布式优化方法

2.3 交替方向乘子法

2.4 本章小结

第三章 区域电网优化调度模型

3.1分布式能源发电模型

3.1.1风力发电机组

3.1.2光伏发电系统

3.1.3储能装置

3.2区域电网结构

3.2.1负荷聚合商

3.2.2售电商

3.2.3微电网用户

3.2.4配电网系统运营商

3.3 分布式优化模型

3.3.1普通用户

3.3.2超级用户

3.4优化模型

3.5算法流程

第四章 仿真验证

4.1 算例测试系统

4.2交替方向乘子法的算法特性

4.2.1收敛性

4.2.2准确性

4.3本章小结

4.4部分代码

第五章 结论与展望

5.1 结论

5.2展望

参考文献

致 谢

第一章 绪论

1.1选题背景及其意义

从1900年以来,全球的发展像火箭一样飙升,人类的生活也大变样了,近些年来社会的发展离不开能源的作用,特别是化石燃料。但化石燃料作为不可再生资源,它的储量却是有限的,在不久的将来化石燃料就将消耗殆尽。到那时,人们的发展必将停滞不前。所以,现在的当务之急就是如何解决能源缺乏的问题,另外,也因为化石燃料的大规模使用,现在的环境污染越来越严重,不符合环保的主题。当前人类研究的重中之重,必定是加大对新能源的开发利用以及对可再生能源的研发。只有这样,人类才能走向可持续发展的道路上,才能不管发展前行,构建一个更加和谐、生态环保的社会。目前,很多国家都已经将此达成共识,今后的科研重点也将发生改变。

现在,传统的集中式发电系统发电还是占据着主导地位,它在供电中的比重还是非常大的。但是,随着全球经济的发展,电力系统也有所改变,此时它的问题就逐渐暴露了出来,也到了改变的时机了。当电网中的一小部分发生故障时,也可能会导致整个电网的瘫痪,造成不可估量的损失。另外,集中式发电系统没办法实时监控区域中任一负荷的变化情况,也没有顺应这个信息时代的潮流。并且依赖长距离输电线路送电入网,易出现输电线路损耗、电压跌落、无功补偿等问题。更重要的是对环境的污染比较严重,不符合低碳环保的宗旨。因此,可以预见的是,未来的电力系统一定要高效、环保、可持续性的。正因如此,分布式电源成功走入人们的视野,也逐渐成为未来电网的发展主流。

剩余内容已隐藏,请支付后下载全文,论文总字数:32365字

您需要先支付 80元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;