g-C3N4半导体光催化材料制备质及其光催化性能研究

 2022-04-17 10:04

论文总字数:25260字

摘 要

随着新时代工业的不断发展,人类对于化石燃料的需求越来越大,地球上存在的化石燃料是有限的,在人类不断地耗费之下日益枯竭,寻找一种全新的能源来替代化石能源,为人类新时代发展更好的做出贡献,这已经是全人类面临的一个重大问题。并且,化石燃料燃烧产生的各种废气造成了非常严重的环境问题,对地球造成了极大的伤害,而且也不利于整个人类社会的可持续发展。本文通过对g-C3N4催化剂的光催化性能进行研究,发现g-C3N4催化剂能有效的将太阳能转化成化学能储存在化学物质中,不仅发现了一种新的可再生能源的制作方式,还能够在一定程度上减少大气中CO2的含量,缓解温室效应。

本文g-C3N4催化剂的光催化性能以及其改性后的催化剂的性能进行研究。通过对不同方法制备的g-C3N4和改性后的g-C3N4进行了傅立叶红外光谱仪(FTIR Spectrometer)、组合型多功能水平X射线衍射仪(XRD)等一系列催化剂形态结构表征测试,分别分析了g-C3N4催化剂的组成、结构、性质以及催化效率与结构之间的联系,从而确定最佳La与g-C3N4的配比,来达到最佳光催化性能的目的。

本文中催化剂的主要成分是g-C3N4、La和Ru,通过改变其中的配比来制备出不同光催化性能的催化剂。然后,在太阳光模拟器里面通入CO,CH4,用制备好的催化剂加入其中进行反应,通过气相色谱来分析出产物的成分和产物的产量,从而确定催化剂是否达到了我们想要的性能。以催化剂本身作为对象,经过一系列的对比对照实验之后,找出三种成分的最优配比。然后经过对不同比例的催化剂进行表征,对比催化剂产率与其成分、结构之间的关系,从而描述出催化剂结构与其催化性能的内在联系。

关键词:g-C3N4,金属掺杂g-C3N4,光催化,二氧化碳,可再生能源

Abstract

With the continuous development of industry in the new era, the demand for fossil fuels is increasing. The existence of fossil fuels on the earth is limited. Under the constant depletion of human beings, it is a major problem facing all mankind to find a new kind of energy to replace fossil energy and make a better contribution to the development of the new era of mankind.Moreover, the various exhaust gases produced by fossil fuel combustion have caused very serious environmental problems, caused great harm to the earth, and is not conducive to the sustainable development of human society as a whole. In this paper, the photocatalytic activity of g-C3N4 catalyst was studied. It was found that g-C3N4 catalyst could effectively convert solar energy into chemical energy stored in chemical substances. It not only found a new way to produce renewable energy, but also reduced the content of CO2 in the atmosphere to a certain extent, alleviating the greenhouse effect.

In this paper, the photocatalytic properties of g-C3N4 catalyst and its modified catalysts were studied. Fourier transform infrared spectroscopy (FTIR Spectrometer), combined multifunctional horizontal X-ray diffractometer (XRD), ultraviolet-visible spectrophotometer (UV-vis), Sirion field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to test g-C3N4 prepared by different methods and modified g-C3N4. The structure, properties and the relationship between the catalytic efficiency and structure were also discussed. The optimum ratio of La to g-C3N4 was determined to achieve the optimum photocatalytic performance.

The main components of the catalysts in this paper are g-C3N4, La and Ru. The catalysts with different optical properties are prepared by changing the ratio of them.Then, CO and CH4 are injected into the solar simulator, and the prepared catalyst is added into it to react. The composition of the product and the yield of the product are analyzed by gas chromatography, so as to determine whether the catalyst achieves the desired performance.Taking the catalyst itself as the object of study, after a series of comparative experiments, the optimum ratio of three components was found out.After characterization of catalysts with different proportions, the relationship between the yield of catalysts and their composition and structure was compared, and the internal relationship between the structure of catalysts and their catalytic performance was described.

KEY WORDS: g-C3N4, metal doped g-C3N4, photocatalysis, carbon dioxide, renewable energy

目 录

摘 要......................................................................................................................................I

Abstract...................................................................................................................................II

第一章 绪论 1

1.1 g-C3N4的研究现状 2

1.2 CH4光还原CO2的研究进展 3

1.2.1电化学沉积法 3

1.2.2溶剂热法 3

1.2.3化学气相沉积法(CVD) 4

1.2.4 热聚合法 4

1.3 改性g-C3N4催化剂的研究进展 5

1.3.1形貌调控 5

1.3.2非金属元素掺杂 5

1.3.3贵金属沉积 5

1.4本章小结 6

第二章 催化剂的制备 7

2.1 实验药品及仪器 7

2.1.1实验药品 7

2.1.2实验仪器 7

2.2 催化剂的制备过程 8

2.2.1催化剂的制备步骤 8

2.2.2催化剂的种类 8

2.3催化剂的活性测试 9

2.3.1光催化活性测试 9

2.3.2光催化活性测试结果 9

2.4 本章小结 12

第三章 催化剂表征 13

3.1 X射线衍射图谱(XRD) 13

3.2 扫描电子显微镜(SEM)和透射电子显微镜(TEM) 14

3.3 傅立叶红外光谱(FTIR) 15

3.4紫外-可见吸收光谱(UV-vis) 16

3.5 荧光光谱(PL) 16

本章小结 17

第四章 结果与展望 18

致 谢 20

参考文献 21

第一章 绪论

工业革命以来的百年,是以石油、天然气为代表的化石能源广泛应用的百年,也是科技快速跃进的百年。伴随着文明的快速发展,环境问题日益严重,大量化石能源的使用带来了大量以CO2为代表的温室气体,而全球绿植覆盖率却逐年下降,解决大气中CO2含量过高问题是无数科技工作者的目标[1]。在世界范围内,越来越多的人关注到能源与环境问题的严重性。由于大气中CO2浓度的增大(从工业化前约280 mL/m3增加到2005年的379 mL/m3) ,全球气温也随之升高,发生自然灾害的频率也在增加。因此,如何减少大气中CO2 的浓度,从根本上控制CO2的排放,已成为世界共同关注的课题。控制减少CO2的排放是控制全球变暖的有效措施[2]。目前,CO2 减排技术主要有3种: 一是CO2收集储存技术,主要是将CO2封存于地下、海洋,或将 CO2 固化成为无机碳酸盐; 二是通过化学方法将CO2转化和利用,主要是将CO2用于尿素、甲醇以及碳酸饮料的生产; 三是CO2的生物固定,即利用植物的光合作用将CO2 转化为有机物,进而降低大气中的 CO2 浓度。随着人们对CO2减排技术的不断探索和研究,光催化还原技术得以应用。光催化还原技术具有无毒、耗能低、不会造成二次污染等优点[3]

剩余内容已隐藏,请支付后下载全文,论文总字数:25260字

您需要先支付 80元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;