MEMS微半球谐振子的设计与工艺仿真

 2022-01-28 10:01

论文总字数:34104字

摘 要

Abstract 2

第一章 绪 论 3

1.1 引言 3

1.2 半球谐振陀螺的发展 3

1.3 半球谐振子的微型化 4

1.4 全文主要内容与章节安排 5

第二章 工作原理与模态分析 6

2.1半球谐振陀螺的工作原理 6

2.1.1半球谐振陀螺的结构及其功能 6

2.1.2半球谐振陀螺的工作原理 6

2.1.3半球谐振陀螺仪的工作模式 7

2.2 半球谐振子的数学模型与分析 9

2.3 MATLAB计算与ANSYS仿真 10

2.4 本章小结 13

第三章 化学法泡法的工艺仿真 14

3.1 化学发泡法的原理 14

3.2 建模与解析 14

3.3 仿真软件的选择 16

3.4 COMSOL仿真的操作 17

3.4.1 配置环境 17

3.4.2 全局参数定义 17

3.4.3 组件定义 19

3.4.4 边界条件设定与网格划分 20

3.4.5 求解器配置与计算 22

3.5 仿真结果统计 23

3.6 本章小结 25

第四章 微半球谐振子的制备实验 26

4.1 碳酸钙发泡剂用量的计算 26

4.2 工艺流程 26

4.3 实验结果 27

4.4 本章小结 29

第五章 总结与展望 30

5.1 本文工作总结 30

5.2 进一步工作展望 30

致谢 31

参考文献 32

MEMS微半球谐振子的工艺仿真与制备

摘要

半球谐振陀螺如今被广泛应用于各个领域,发展前景十分广阔。半球谐振子是半球谐振陀螺仪的核心部件,因此,半球谐振陀螺的发展迫切需要半球谐振子制备工艺的革新,本文提出的化学发泡法有望制备出高性能微玻璃半球谐振子,对半球谐振陀螺的微型化具有重要的意义。同时本文采用理论和有限元仿真结合指导微半球谐振子的工作频率设计,并利用有限元进行了工艺仿真指导实验,对比仿真结果与实验结果进行设计优化和工艺调整,这对微半球谐振子的设计和制备具有重要的意义。

本文通过对文献的概括与整理,归纳出半球谐振陀螺的发展历史,并详细介绍了半球谐振子的组成。随后通过半球谐振子固有振动频率的计算公式,运用MATLAB进行计算,同时运用ANSYS对谐振子模型进行建模和有限元分析,验证计算公式与进一步了解各参数对固有谐振频率的影响。

随后运用COMSOL Multiphysics 5.2软件进行工艺流程仿真,模拟当腔体内存在一定气压的气体,玻璃薄层被吹起并在稳定时形成近似微半球壳结构。通过软件模拟我们试图找到合适的初始腔内气压,使吹制达到稳定(即腔内气压与玻璃薄层外部气压平衡)时玻璃微半球壳结构的深宽比可以达到1:1,并观察与记录达到稳定时微玻璃壳状体的几何参数。根据仿真得到的理想腔内压强,计算腔内的气体的物质的量,并推算所需的化学发泡剂的质量;然后进行实验制备微半球谐振子,记录实验结果。

关键词:半球谐振陀螺,微半球谐振子,化学发泡法,有限元分析,工艺仿真。

PROCESS SIMULATION AND FABRICATION OF MEMS MICRO HEMISPHERICAL SHELL RESONATOR

Abstract

窗体顶端

窗体底端

This paper briefly describes the history and the basic principles of hemispherical resonator gyros (HRG). MATLAB is used to calculate resonant frequencies of hemispherical shell resonator, and this is followed by comparisons with ANSYS simulations to verify the theoretical analysis. COMSOL Multiphysics 5.2 is utilized to simulate the foaming process to determine the pressure in the cavity, and the fabrication experiments are carried out to find out the key factors affecting the shape and size of the fabricated resonators.

The development and history of HRG is summarized, and this is followed by the introduction of HRG components, working principle and three operating modes. The operating modes include: (1) force-to-rebalance mode (FTR), (2) open-loop mode, (3) whole angle mode (WA). MATLAB is used to calculate the resonant frequencies of the resonator, and ANSYS is used for verification and revealing the influence of the physical parameters on the working resonant frequency.

Then we use COMSOL Multiphysics 5.2 for process simulation. In the simulation, we set an initial pressure in the chamber. At a certain temperature above the soften point of the glass, the glass layer is foamed, under a pressure difference, to form the micro hemispherical shell. Though the simulation, we can find out the proper pressure to achieve high aspect ratio (height/radius) such as 1:1. Finally, fabrication experiments are carried out.

The design guidance of the working frequency is provided by a combination of theoretical analysis and Finite Element Analysis (FEA), and the fabrication experiments is also guided by Finite Element Analysis (FEA), COMSOL Multiphysics 5.2. The simulations and the fabrication results are compared to achieve the optimization of the design and the fabrication process. The chemical foaming process may promise high-performance micro hemispherical shell resonator (μHSR), contributing to the miniaturization of hemispherical resonator gyro (HRG).

KEY WORDS: hemispherical resonator gyro (HRG), micro hemispherical shell resonator (μHSR), chemical foaming process, Finite Elements Analysis (FEA), process simulation.

第一章 绪 论

1.1 引言

剩余内容已隐藏,请支付后下载全文,论文总字数:34104字

您需要先支付 80元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;